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Neuroimaging studies have identified a subgroup of patients with a Disorder of
Consciousness (DOC) who, while being behaviorally non-responsive, are nevertheless
able to follow commands by modulating their brain activity in motor imagery (MI) tasks.
These techniques have even allowed for binary communication in a small number
of DOC patients. However, the majority of patients who can follow commands are
unable to use their responses to communicate. A similar dissociation between present
command following (CF) and absent communication abilities has been reported in
overt behavioral assessments. However, the neural correlates of this dissociation in
both overt and covert modalities are unknown. Here, we used functional magnetic
resonance imaging (fMRI) to explore the neural mechanisms underlying CF and
selection of responses for binary communication using either executed or imagined
movements. Fifteen healthy participants executed or imagined two different types
of arm movements that were either pre-determined by the experimenters (CF) or
decided by them (action selection, AS). Action selection involved greater activity
in high-level associative areas in frontal and parietal regions than CF. Additionally,
motor execution (ME), as compared to MI, activated contralateral motor cortex,
while the opposite contrast revealed activation in the ipsilateral sensorimotor cortex
and the left inferior frontal gyrus. Importantly, there was no interaction between the
task (CF/AS) and modality (MI/ME). Our results suggest that the neural processes
involved in following a motor command or selecting between two motor actions
are not dependent on how the response is expressed (via ME/MI). They also
suggest a potential neural basis for the distinction in cognitive abilities seen in DOC
patients.

Keywords: functional magnetic resonance imaging (fMRI), disorders of consciousness, command following,
communication, motor execution, motor imagery

Introduction

In recent years, advances in neuroimaging techniques have made it possible to detect signs
of covert cognition in patients with a clinical diagnosis of vegetative state (VS; Fernández-
Espejo and Owen, 2013). VS patients do not show purposeful overt behavior and thus are
considered to be entirely unaware of themselves and their environment (Jennett and Plum, 1972).
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However, it is estimated that around 20% of them may be able to
follow commands by willfully modulating their brain activity in
mental imagery tasks (Monti et al., 2010; Cruse et al., 2011). Such
tasks typically involve instructing the patient to imagine a motor
action (e.g., swinging their arm to hit a tennis ball; Owen et al.,
2006), while their neural responses are recorded with functional
magnetic resonance imaging (fMRI) or electroencephalography
(EEG; for a review of these studies, see Fernández-Espejo and
Owen, 2013).

To date, 34 VS and other non-responsive patients with a
disorder of consciousness (DOC) have demonstrated covert
command following (CF) in motor imagery (MI) tasks with EEG
(Cruse et al., 2011, 2012a; Gibson et al., 2014; Horki et al., 2014;
Coyle et al., 2015), or fMRI (Owen et al., 2006; Monti et al.,
2010; Bardin et al., 2011; Fernández-Espejo and Owen, 2013;
Forgacs et al., 2014; Gibson et al., 2014). Subsequent studies
have used selective visual or auditory attention (Schnakers
et al., 2008; Lulé et al., 2013; Naci and Owen, 2013; Monti
et al., 2014; Pan et al., 2014), as well as attempted movements
(Bekinschtein et al., 2011; Cruse et al., 2012b; Horki et al., 2014)
to reveal covert awareness in 34 more patients. The reliability
of fMRI for detecting when participants are imagining a motor
command, or engaged in other mental imagery tasks (e.g.,
imagining walking around their house) has allowed some of
the approaches above to be successfully used as communication
tools, by pairing each pattern of activity with ‘‘yes’’ and ‘‘no’’
responses (Fernández-Espejo and Owen, 2013). However, the
majority of patients who successfully follow commands are
unable to perform communication tasks (Owen, 2011). Indeed,
to date only three DOC patients have been able to successfully
communicate accurate answers to yes/no questions in the
scanner (Monti et al., 2010; Fernández-Espejo and Owen, 2013;
Naci and Owen, 2013), while a fourth exhibited communication
capabilities but failed to produce correct answers (Bardin et al.,
2011).

Command following and communication are well-established
signs of consciousness (Giacino et al., 2004) and as such,
are systematically explored in standard bedside diagnostic
assessments. The Coma Recovery Scale-Revised (CRS-R; Giacino
et al., 2004), an internationally accepted behavioral diagnostic
tool for DOCs, considers reliable behavioral responses to
commands one of the key diagnostic criteria to reclassify
a patient as being in a minimally conscious state (MCS;
Giacino et al., 2002). Moreover, when present, reliable CF
guarantees further assessment of communication capabilities.
Importantly, only when communication becomes functional
(i.e., the patient is able to give accurate answers) is the
patient considered to be emerging from the MCS (Giacino
et al., 2002). MCS patients are known to be clinically
heterogeneous, but very few works have systematically studied
the occurrence of behavioral CF or communication. A recent
report including a cohort of 52 MCS patients identified
CF in 33%, and non-functional communication in 19% of
them. Importantly, only 17% of chronic patients who were
assessed more than 1 year after the initial injury showed CF
abilities, and none were able to communicate (Estraneo et al.,
2014).

The ability to communicate correct answers depends on
preservation of a number of high-order cognitive processes, such
as autobiographical memory, semantic representations, mental
orientation, etc. However, when accuracy is not taken into
account (non-functional communication), providing responses
to binary questions ultimately requires the ability to select
between two alternative behaviors, representing ‘‘yes’’/‘‘no’’. The
specific mechanisms underlying the differences between the
ability to respond to a command, and the ability to select between
two potential responses to answer a binary question (henceforth
referred here as ‘‘CF’’ and ‘‘action selection, AS’’ respectively)
have not been explored. Furthermore, the relationship between
such differences and the type of behavior (mental or behavioral)
used to provide the responses is entirely unknown.

In order to investigate these questions, we designed an fMRI
paradigm where healthy participants were asked to move their
right hand (motor execution, ME) or imagine moving their right
hand (MI) in response to auditory cues. Such cues instructed
them to either voluntarily select an action between two possible
alternatives, or perform the one that was dictated to them.

Materials and Methods

Participants
Fifteen right-handed healthy volunteers (ages 19–29, average
24 years; eight females) with no history of neurological or
psychiatric disease participated in the study. All volunteers
gave written informed consent and were compensated for their
participation in the experiment. The Health Sciences Research
Ethics Board of the University of Western Ontario provided
ethical approval for the study.

fMRI Paradigm
Participants lay supine with their right arm bent at an
approximately 90◦ angle so that their forearm rested across their
torso. Because movements of the shoulder and upper arm may
induce artifacts in the participant’s data (Rossit et al., 2013), a
strap around the participant’s chest was used to minimize upper
arm and shoulder movements, while allowing for full rotation at
the elbow.

Figure 1 described the fMRI paradigm used in this
experiment. While in the MRI scanner, participants were
instructed to either execute or imagine a series of movements
involving their right forearm. We used two different arm
movements: a ‘‘slide’’, which involved sliding the forearm
forward and back; and a ‘‘lift’’, which involved lifting and
lowering the forearm. Each sequence involved six movements
(combining ‘‘slides’’ and ‘‘lifts’’). Imagery and execution blocks
were 20 s long, and were alternated with periods of rest for
a total of 8 min. The beginning of each block was cued
with the word ‘‘move’’, ‘‘imagine’’ or ‘‘relax’’. Participants also
completed blocks where they were instructed to relax while a
researcher moved their arm (data not reported here). Within
each block (imagery or execution), participants either received
a pre-determined sequence (i.e., CF) or were asked to create
one by individually choosing one out of the two possible
movements at a time (AS), in a 2 × 2 within-subjects factorial
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FIGURE 1 | fMRI paradigm. This study combined two different arm
movements (slide and lift) to create various six-movement long sequences
(e.g., “slide lift lift slide lift slide”). Subjects either executed (ME) or imagined
(MI) movement sequences that were either pre-determined by experimenters
(CF) or chosen by them (AS), in a 2 × 2 within subjects factorial design.
Onsets in CF blocks were cued with the words “slide”, or “lift”, while “go” was
used to cue onsets in AS blocks. Each block lasted 20 s and consisted of six
moves. During rest blocks (dotted), subjects lay still in the scanner. There were
four blocks of each condition, which were presented in a pseudorandom order
for a total of 20 blocks (in an additional condition not reported here, the
experimenter passively moved subjects’ arms). For the CF blocks, subjects
were randomly assigned four different movement sequences from a collection
of 48 unique, pre-determined movement sequences created for this
experiment. CF, command following; AS, action selection; ME, motor
execution; MI, motor imagery.

design. During the blocks with pre-determined sequences,
each individual action was cued with the word ‘‘slide’’ or
‘‘lift’’. Each participant was randomly assigned four out of a
possible 48 unique movement sequences, all four of which
were presented pseudorandomly over each experimenter-cued
condition. For those where the subject had to create their own
sequence, each action was cued with the word ‘‘go’’. There
were four blocks of each condition, which were presented in a
pseudorandom order for a total of 24 blocks. All participants
completed two runs of this task. An infrared MR-compatible
camera (MRC Systems GmbH), placed above the participant’s
head, was used to record participants’ actions for each run.
The recordings were monitored online to confirm that all
participants performed all runs with no errors (i.e., they moved
their hand to command during ME trials, and remained
still during MI trials). In addition to the video monitoring,
participants were asked afterwards about their execution of
the task. All participants reported performing the imagery task
correctly.

Image Acquisition
Data was acquired in a 3T Siemens scanner (Magnetom Prisma,
Siemens, Germany), with a Siemens 32-channel head-coil, at
the Centre for Functional and Metabolic Mapping (CFMM) at
Robarts Research Institute. Audio instructions and task cues were
presented using Matlab® R2011a on a MacBook Pro laptop (OSX
10.6.8) and anMRI-compatible high-quality digital sound system
via noise-attenuated headphones (Sensimetrics, S14).

The fMRI protocol included two sessions of 240 volumes
each, using echo-planar images (36 axial slices, TR = 2000 ms,
TE = 30 ms, matrix size = 70 × 70, slice thickness = 3 mm,
in-plane resolution = 3 × 3 mm, flip angle = 78◦). A
high-resolution T1-weighted MPRAGE structural image

(TR = 2300 ms, TE = 2.32 ms, IT = 900, matrix size = 256 × 256,
voxel size 1 × 1 × 1 mm, flip angle = 8◦) was also acquired.

fMRI Data Analysis
We performed Independent Component Analysis using the FSL
MELODIC tool,1 in order to remove motion artifacts (Friston
et al., 1996; McKeown and Sejnowski, 1998; Beckmann and
Smith, 2004). One of the authors (N.R.O.) visually inspected all
the components and identified those that corresponded to head-
motion artifacts and were correlated with the execution blocks.
An average of 5 ± 2.6 artifactual components were identified per
subject and run. Finally, we removed the identified components
from the fMRI data. The de-noised data was then pre-processed
and analyzed with SPM8.2 After manually AC-PC reorienting the
data, the following spatial pre-processing steps were performed:
realignment, co-registration of the structural and functional
data, spatial normalization to Montreal Neurological Institute
(MNI) space, and smoothing with an 8-mm FWHM Gaussian
kernel. High-pass filtering with a cut-off period of 128 s was
used to remove linear drift. A single subject fixed-effect two-
by-two factorial analysis was performed for each subject at
the whole-brain level. Factor 1 was defined as ‘‘Task’’ with
two levels (motor imagery/motor execution) and Factor 2
was defined as ‘‘Level of selection’’, with two levels (AS/CF).
Scans were modeled as belonging to the AS/ME, CF/ME,
AS/MI, or CF/MI conditions using the canonical hemodynamic
response function (Friston et al., 1995) with the participant’s
rest condition used as a baseline. Realignment parameters and
passive movement blocks were modeled as effects of non-
interest.

While all participants reported completing the MI blocks,
the nature of MI precludes any observable or external means of
confirmation that they did indeed perform the task. However,
previous MI studies have demonstrated that activity in the
supplementary motor area (SMA) can be used as neural evidence
for MI (Owen, 2011). We examined individuals’ whole brain
activity during MI conditions compared to rest in order to
confirm their completion of the task, and to avoid biases in
the analysis from including participants who may not have
performed it. 13 out of 15 participants showed significant
activity in the SMA (cluster level uncorrected p < 0.001).
The remaining two participants were removed from subsequent
analyses. Therefore, 13 participants were included in the group
analyses, which consisted of one-sample t-tests for each contrast
of interest. The statistical threshold was set at a family wise error
(FWE) corrected p < 0.05 at the cluster-level. Two additional
contrasts, individually comparing ME and MI conditions to rest,
were also included to confirm that the task elicited a similar
pattern of activation as previously reported paradigms (Owen
et al., 2006, 2007; Formaggio et al., 2013; Machado et al., 2013;
Fernández-Espejo et al., 2014). The FSLHarvard-Oxford Cortical
and Subcortical Structural Atlases (see Acknowledgments) were
used for anatomical identification.

1http://www.fmrib.ox.ac.uk./fsl
2http://www.fil.ion.ucl.ac.uk/spm
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FIGURE 2 | Motor execution vs. motor imagery. Group level analysis
showed greater activity in contralateral M1/S1 when motor execution was
compared to motor imagery (top panel). Conversely, motor imagery, as
compared to motor execution, activated the ipsilateral M1, S1 and left inferior
frontal gyrus (bottom panel). Results are thresholded at family wise error
(FWE)-corrected p < 0.05 for cluster level activation and overlaid on an
anatomical T1-weighted image.

Results

Motor Imagery vs. Motor Execution
The positive effect of task (i.e., ME vs. MI) revealed a significant
cluster of activation in the left sensorimotor area, as shown in
Figure 2. This included M1, the primary somatosensory cortex
(S1), and the superior parietal lobule. The negative effect of
task (i.e., MI vs. ME) revealed significant activity in the right
S1 and M1, left inferior frontal gyrus and right occipital pole
(representing the primary and secondary visual cortices). Group
activations are shown in Table 1.

Action Selection vs. Command Following
The positive effect of level of selection (i.e., conditions where
the participant had to choose between two actions vs. those in
which the action was determined by the experimenter) revealed
significant activity in frontal regions including bilateral frontal
poles and middle frontal gyri, as well as the paracingulate
gyrus (including pre-SMA). There was also significant activation
in the somatosensory association cortex, specifically the right
angular gyrus and the left insular cortex. Group activity for
this contrast is shown in Figure 3. The inverse contrast (CF

FIGURE 3 | Action selection vs. command following. AS (participants
selected their movements), as compared to CF (movements were determined
by experimenters) elicited greater activity in the middle frontal gyrus, pre-SMA,
somatosensory association cortex and insula. Results are thresholded at
FWE-corrected p < 0.05 for cluster level activation, and overlaid on an
anatomical T1-weighted image.

vs. AS) showed bilateral activation in the lateral occipital cortex
(extrastriate visual area) and primary auditory cortices as well as
the precuneus cortex. Group activations are shown in Table 2.

Interactions
There were no significant interactions between task and level of
selection. No activity was observed even when thresholds were
lowered to an uncorrected p < 0.01. To increase the sensitivity
of our exploration of this interaction, we ran an additional
analysis using a mask including all areas active in the main effect
of task and level of selection. The result from this additional
analysis confirmed no significant effects, even at uncorrected
p < 0.01. To further explore the consistency of this (lack of)
effect at an individual participant level, we inclusively masked the
positive interaction for each individual with their activity from
the two main effects. This revealed no significant activity for any
participant. Two participants however showed an uncorrected
cluster in the left frontal pole, with peak below an uncorrected
p < 0.001.

Additionally, we calculated the percent signal change for
each participant in three 10 mm spherical ROIs (i.e., M1, SMA,
and pre-SMA). These were defined using coordinates from the
clusters revealed in the group level whole brain analysis for ME
vs. rest (coordinates −30 −25 58), MI vs. rest (−3 8 55), and the
positive effect of level of selection (3 20 46). Figure 4 shows the
percent signal change across all four conditions for each ROI:
AS/ME, CF/ME, AS/MI, and CF/MI. Activity in M1 increased
during ME conditions compared to imagery, while activity in
the SMA followed the opposite pattern, consistently across

TABLE 1 | Motor execution vs. motor imagery.

Brain structure Coordinates Cluster size (k) T value p value

x y z

Positive effect of task (motor execution > motor imagery)
Superior parietal lobule/postcentral gyrus −24 −43 61 269 6.35 0.01

Negative effect of task (motor imagery > motor execution)
Inferior frontal gyrus −57 20 22 5731 11.44 <0.001
Postcentral/Precentral gyrus 39 −25 61 1680 9.18 <0.001
Occipital pole 12 −88 28 718 7.17 <0.001

Results thresholded at FWE-corrected p < 0.05 for cluster level activation. Coordinates are in Montreal Neurological Institute (MNI) space, anatomical structures were

identified using the FSL Harvard-Oxford Cortical and Subcortical Structural Atlases.
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TABLE 2 | Action selection vs. command following.

Brain structure Coordinates Cluster size (k) T value p value

x y z

Positive effect of level of selection (action selection > command following)
Frontal pole, Middle frontal gyrus 48 38 25 2662 9.97 <0.001
Middle frontal gyrus −36 29 31 113 8.34 0.045
Angular gyrus 45 −49 40 281 6.06 0.001
Frontal pole −24 50 −14 278 5.29 0.001

Negative effect of level of selection (command following > action selection)
Middle temporal gyrus, Lateral occipital cortex 48 −58 4 229 11.85 <0.003
Lateral occipital cortex −48 −70 10 148 8.50 0.02
Superior temporal gyrus −63 −19 1 347 6.88 <0.001
Heschl’s gyrus 48 −13 1 169 6.17 0.012
Precuneus cortex −12 −58 13 312 5.36 0.001

Results thresholded at FWE-corrected p < 0.05 for cluster level activation. Coordinates are in Montreal Neurological Institute (MNI) space, anatomical structures were

identified using the FSL Harvard-Oxford Cortical and Subcortical Structural Atlases.

participants. The pre-SMA appeared to becomemore activated in
conditions where participants select their own actions compared
to following commands. Activity in M1 did not differ between
the AS and CF condition within a given modality (execution or
imagery).

Discussion

Here, we provide the first report of the differences in brain
activity elicited by CF and the level of response selection
necessary for binary communication, in an fMRI task involving
both external behavioral responses (i.e., ME), as well as covert
neural responses (i.e., MI). Our results provide evidence to
support that, while motor imagery and execution may be
dissociable processes, the mechanisms underlying the ability to
select between two actions are not dependent on how the motor
response is expressed (i.e., executed or imagined).

While both behavioral and neuroimaging studies agree in
suggesting that most VS or MCS patients who are overtly or
covertly able to follow commands do not show communication
abilities (Monti et al., 2010; Owen, 2011; Naci and Owen,
2013; Estraneo et al., 2014) the neural correlates behind this
divergence are not well understood. We found significantly
higher activity in frontal regions, including the pre-SMA, and
middle frontal gyrus when participants had to select between
two possible actions (pre-requisite for binary communication), as
compared to when the examiner determined each specific action
(command following). Previous studies have demonstrated that
both areas are involved with higher order executive functions
related to voluntary motor control (Wiese et al., 2004; Haggard,
2008; Mostofsky and Simmonds, 2008). The cluster of activation
in the left middle frontal gyrus extended to the dorsolateral
prefrontal cortex (DLPFC). Activity in this region has been
reported in several PET studies (Jahanshahi et al., 1995; Jenkins
et al., 2000; Weeks et al., 2001) comparing externally-triggered
movements (e.g., cued by an auditory or visual stimulus) to
self-initiated movements (e.g., self-paced by the participant).
DLPFC involvement was thought to reflect an increased demand
on working memory in the self-initiated condition, where

participants had to keep track of their own movements’ timing
rather than simply responding to cues (Weeks et al., 2001). In
our experiment, participants determined the type, rather than the
timing, of their movements in the AS condition. Nevertheless, the
greater activity elicited in the DLPFC likely also reflects working
memory demands, as they had to hold their selected movements
in memory to create their unique movement sequences.

Furthermore, activity in pre-SMA has previously been
observed in motor experiments where participants were asked
to control certain aspects of the movements they performed,
such as direction, timing, or type (Jahanshahi et al., 1995; Deiber
et al., 1999; Jenkins et al., 2000; Jankelowitz and Colebatch,
2002; Gowen and Miall, 2007). Crucially, the pre-SMA has also
been related to decision-making and AS processes (Gleichgerrcht
et al., 2010). In a 2008 review, Haggard (2008) proposed
that voluntary action execution is a form of decision-making
that includes two decisions: whether to act, and what to do.
The latter is further broken down into selecting between a
goal or task, and selecting between possible movements to
achieve it, both of which involve participation of the pre-SMA.
Moreover, neurophysiological studies in non-human primates
have revealed increased activity in the pre-SMA when animals
must select between different motor responses cued by visual
stimuli (Matsuzaka et al., 1992; Isoda and Hikosaka, 2007).
Similarly, neuroimaging studies in humans have shown that
regions within the pre-SMA are activated when participants
choose between different movements (Hoffstaedter et al., 2013),
and different tasks (e.g., following a specific, cued movement
plan or making their own movement plan) as well as quickly
switching between these two tasks (Nachev et al., 2005). The
pre-SMA is thought to help form and initiate action intentions
by forwarding inputs from the basal ganglia and prefrontal
cortex to the SMA and M1 (Nachev et al., 2007; Haggard,
2008). Prefrontal areas including the pre-SMA are also thought
to influence AS by preferentially enhancing a particular desired
action among several alternatives represented in the parietal
cortex (Cisek and Kalaska, 2010). Our results also showed
pre-SMA involvement when participants selected actions that
were imagined. Indeed, neuroimaging studies suggest that the
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FIGURE 4 | Percent signal changes in M1, SMA and pre-SMA across
conditions. Individual participant percent signal changes across the four
conditions; action selection/motor execution (AS/ME), command
following/motor execution (CF/ME), action selection/motor imagery (AS/MI),
and command following/motor imagery (CF/MI). Results are shown in three
10 mm, spherical ROIs defined by coordinates derived from group level
activity from the whole brain analysis. The top panel shows activity in the
primary motor cortex (M1, coordinates −30 −25 58, from the motor execution
vs. rest contrast), which also includes primary somatosensory cortex. The
middle panel shows activity in the supplementary motor area (SMA;
coordinates −3 8 55, from the motor imagery vs. rest contrast) and the
bottom panel shows activity in the pre-SMA (preSMA, coordinates 3 20 46,
from the positive effect of level of selection contrast). The group mean percent
signal change is indicated by a triangle.

pre-SMA and SMA are also recruited in the motor planning
and preparation phase of imagined movement (Stephan et al.,
1995; Cunnington et al., 2005). Additionally, we found activity
in the left insula and right angular gyrus for AS, as compared
to CF. These areas are known to be involved in contributing
to the sense of agency or personal authorship of voluntary

movements (Farrer and Frith, 2002; Farrer et al., 2003, 2008;
Tsakiris et al., 2007). Finally, we also observed a nearly significant
(p = 0.054) cluster of activity in the left supramarginal gyrus.
This is in agreement with a previous fMRI study that reported
increased activation in the left inferior parietal lobe when
subjects self-initiated fingermovements, compared to when these
movements were performed in response to visual cues (Wiese
et al., 2004).

The inverse contrast comparing activity when participants
followed commands to when they selected their own responses
revealed activity in primary auditory cortices. The auditory
activity likely reflects the increased auditory cues (i.e., movement
words) presented in the CF blocks, compared to the simpler
‘‘Go’’ cues heard during AS. Interestingly, this contrast also
revealed activity in the precuneus, an area associated with
consciousness and its disorders (Cavanna and Trimble, 2006).
Specifically, the precuneus is part of the default mode network
(DMN), a long-range brain network thought to be active during
resting-state and self-referential thought (Uddin et al., 2009).
The DMN’s functional and structural connectivity seems to
be associated with the level of impairment in DOC patients,
with increased connectivity associated with higher levels of
consciousness (Vanhaudenhuyse et al., 2010; Fernández-Espejo
et al., 2012; Crone et al., 2015). Importantly, the DMN has been
found to deactivate during tasks requiring effortful attention to
external stimuli and goal-oriented responses (Singh and Fawcett,
2008; Uddin et al., 2009). Therefore, it is possible the precuneus
activity seen in this contrast represents deactivation in this area
during the more cognitively demanding AS condition.

Overall, our results suggest that selecting between two
possible actions requires a greater involvement of high-level
associative areas in frontal and parietal cortices than following
simple commands. Crucially, recent structural and functional
connectivity studies have revealed marked impairments in
associative fronto-parietal networks in DOC patients (Laureys
et al., 1999; Juengling et al., 2005; Laureys, 2005; Levine
et al., 2008; Fernández-Espejo et al., 2012), which correlated
with the complexity of the behaviors the patients were able
to exhibit (Fernández-Espejo et al., 2012). Although patients
who are capable of following commands vs. those who can
also communicate have not been specifically compared in the
studies above, a reasonable hypothesis would be that more
severe disruptions in these long-range fronto-parietal networks
may be the basis for the inability to communicate that some
‘‘command followers’’ present. Future studies directly comparing
brain damage in these two groups of patients are needed to test
this hypothesis, and identify the specific structural damage that
underlies this dissociation.

A central aim of our study was to investigate whether the
differences between CF and AS for binary communication were
dependent on the modality in which the participant expressed
their response (i.e., imagery or execution). MI involves creating
an internal mental representation of an overt action without
any concurrent executed movement (Jeannerod, 1995). In
contrast, ME involves physically performing amovement. Classic
neuroimaging studies revealed similar patterns of brain activity
for both MI and ME (Porro et al., 1996; Lotze and Halsband,
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2006). This led some authors to conclude they may be equivalent
processes (Jeannerod, 1995; Stephan et al., 1995). However, more
recent work has revealed important differences in functional
brain activation and connectivity between the two (Kilner et al.,
2004; Carrillo-de-la-Peña et al., 2008; Burianová et al., 2013;
Machado et al., 2013; Xu et al., 2014; Fernández-Espejo et al.,
in press). Consistent with these reports, we identified higher
activation in left sensorimotor areas, including M1, S1, and the
superior parietal lobule, for ME, as compared to MI. In contrast,
MI was associated with higher activity in the right M1 and
S1. This higher ipsilateral activity may be reflecting inhibition
during ME. Indeed, concurrent left M1 activation and right M1
deactivation has been previously reported in both EEG and fMRI
studies involving right hand movement (Grefkes et al., 2008;
Hayashi et al., 2008; Machado et al., 2013).

A large number of studies have reported covert CF and/or
communication in patients who are entirely non-behaviorally
responsive (Cruse et al., 2011, 2012a; Goldfine et al., 2012; Owen
et al., 2006; Schnakers et al., 2008; Monti et al., 2010, 2014;
Bardin et al., 2011; Bekinschtein et al., 2011; Fernández-Espejo
and Owen, 2013; Lulé et al., 2013; Naci and Owen, 2013; Forgacs
et al., 2014; Gibson et al., 2014; Pan et al., 2014; Coyle et al., 2015).
However, some reports suggest that the opposite discrepancy
between overt and covert capabilities may also exist. For instance,
Bardin et al. (2011) reported two brain injured patients, from
a cohort of seven, who were capable of following commands
or communicating in behavioral assessments, but failed to do
so with MI paradigms. The authors suggested that resource
allocation problems relative to the high cognitive demands
of MI tasks could account for their results. An alternative
explanation, however, would be that the above discrepancies
simply represent false-negatives in the neuroimaging data. While
the prevalence of false negative results in VS patients is difficult
to estimate because of the lack of a reliable ‘‘gold-standard’’
clinical measure to confirm whether a patient is conscious
or not (Peterson et al., 2013), it is well known that a small
proportion (15%) of conscious, healthy volunteers fail to show
reliable appropriate brain activity in MI paradigms (Cruse et al.,
2011; Hampshire et al., 2012; Fernández-Espejo et al., 2014).
Furthermore, abnormal or absent brain activity in these patients
could result from various factors including their unique brain
damage and arousal levels, as well as limitations with the
neuroimaging technique used (e.g., excessive motion artifacts).

Crucially, here we failed to identify an interaction between
the response modality (i.e., MI and ME) and the level of AS.
Although our relatively small sample size (n = 13) raises the
possibility that this null result could be a false negative (Peterson
et al., 2015), the observed lack of interaction persisted even at very
low statistical thresholds. When a mask including all areas active

in main effects was used at a single subject level, the positive
interaction yielded activity in only two participants, which did
not survive peak or cluster level correction. This lack of evidence
for an interaction suggests that these two factors are dissociable.
Amore in-depth analysis of each individual’s percentage of signal
change in M1, SMA and pre-SMA across conditions supported
this claim. In other words, our results may suggest that the
neural processes involved in following a command or selecting an
action are not dependent on the modality in which the response
is expressed. Therefore, we provide evidence to suggest that a
patient who can communicate by selecting between two mental
responses in an fMRI paradigm would be demonstrating the
same level of cognitive function as a patient communicating with
their behavioral responses at the bedside. This provides further
support for the use of MI fMRI tasks as a reliable proxy for overt
CF and communication in brain-injured patients.
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